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Coherent structure analysis of spatiotemporal chaos
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We introduce a measure to quantify spatiotemporal turbulence in extended systems. It is based on the
statistical analysis of a coherent structure decomposition of the evolving system. Applied to a cellular excitable
medium and a reaction-diffusion model describing the oxidation of CO ¢b0B% it reveals power-law
scaling of the size distribution of coherent space-time structures for the state of spiral turbulence. The coherent
structure decomposition is also used to define an entropy measure, which sharply increases in these systems at
the transition to turbulence.

PACS numbes): 82.40.Bj, 05.45-a, 05.65+b, 47.54:+r

Low-dimensional chaos is now well understood and meamation within the time intervalN;At. In the second step, we
sures for its characterization are highly developed; howeveperform a binary reduction of the data by imposing a thresh-
the characterization of spatiotemporal chaos remains an ineld to distinguish between active and inactive sites. Active
portant challenge. Several avenues have been explored #ites that are connected as neighb@rsthe time-forward
recent years to establish measures of turbulent behavior i@irection form objects which we terncoherent space-time
distributed systems, such as extensive scaling of Liapuno@lusters[6]. In the third step, a decomposition of the coher-
exponents, fractal dimensions, and spatial and temporal cont clusters is carried out. If two clusters collide and merge
relation functions(for a review, see Ref1]). Hildebrandet ~ into a single cluster, the younger contributing cluster is ter-
al. [2] have described spiral turbulence in terms of defecfminated at the collision point in order to avoid counting two
densities, i.e., the density of centers of rotation, where thétructures from uncorrelated sources as one coherent struc-
number of defects was found to fluctuate around a constaiére. The sizes of each of the coherent clusters, i.e., the
mean value. Principal orthogonal decomposition in spac&umber of active elements constituting a cluster, is charac-
and time[Karhunen-Loeve decompositibhas also been uti- terized by the cluster-size distribution functipg.
lized to characterize spatiotemporal ch48% The number Spiral turbulence in a cellular excitable mediukve con-
of orthogonal components necessary to reconstruct the essefider a square array of excitable three-state ag|lswith
tial dynamical features of a spatiotemporal chaotic systenfattice spacinga. The voltage controling the state of the cell
has been found to scale extensively with the system size, arfii; is denoted byv;;. When the voltagev;; crosses the
extensive scaling has been revealed for spiral defect chaos tAresholdb, the celle; fires, changing from the quiescent to
a convection systerf#]. the excited state. Immediately after firing, the cell becomes

In this paper, we describe a method for characterizing€fractory, where it is not excitable during a refractory period
spatiotemporal dynamics that is based ostatisticalanaly-  With zero voltage. In the quiescent state, each cell is dissipa-
sis of the associated spatiotemporal beha\bhrWe create a tive, with an exponential decajith decay constant) of
decomposition of the space-time matrix in terms of clusterghe voltagesy;; ,
of correlated events in space and time. The birth and death of
a space-time cluster are dirgctly related to particular dyna_mi— vij (t+At) =vij(t)exp — yAt) + 2 G(i,j;k,Dp(k,l,t).
cal events, and the cluster is therefore linked to the physical kI
mechanism underlying the spatiotemporal behavior. Further- (@N)
more, coherent cluster decomposition allows the reconstruc- » . . . .
tion of specific features of the spatiotemporal dynamics, suct} "€ @dditional term on the right-hand side of this equation
as cluster-size statistics and associated scaling laws. We hafgScribes the impact of pulses emitted by other agjdir-
applied this method to a cellular excitable medium and dn9 at timet. The indicator functiom(k,1,t) is unity for cells
reaction-diffusion model describing the oxidation of CO onthat are firing at timet and zero otherwise. It is determined
P(100). We find power-law scaling of the cluster-size distri- PY the voltagesv, at timet, i.e., p(k,1,t) =0 (v(t) —b)
bution in each model for the state of spiral turbulence as wellVith the Heavyside functior®(-). The Green’s function
as an increase in spatiotemporal entropy at the onset of thf@(i.j;k.1) is defined as

behavior. ,
Coherent cluster analysis)Ve consider the spatiotempo- Gi -k 1)=K exgd -\ Fij ki @)
ral evolution of a two-dimensional extended dynamical sys- 1 a2 |’

tem. In the first step, we stack a temporal sequenchl;of
snapshots of the system, taken at tiygs nAt, to obtain a  with ry; ,; being the distance between the emitting and the
space-time cube that carries all of the spatiotemporal inforreceiving cell and\ describing the interaction range between
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the cells. While under most conditions, this model repro-
duces the typical patterns of excitable me@ach as the
FitzHugh-Nagumo modé7]), it exhibits spatiotemporal dis-
order in the form of spiral turbulence at weak dampinand
weak couplingK. The interaction between firing and quies-
cent cells results in the nucleation of daughter waves, which
collide with parent waves to give rise to spatiotemporal dis-
order. A typical turbulent pattern fd€ close to the propaga-
tion thresholdK is shown in Fig. 1a). Far from the propa-
gation threshold, the pattern is characterized by the
coexistence of many spiral wavfsig. 1(b)], similar to the
convective spiral turbulence observed by klual. [8]. Ap-
plying the coherent cluster algorithm to these chaotic pat-
terns reveals the power-law distribution of cluster sizes
shown in Fig. 1c). The range and slope of the power law
depends on the value of the coupling constantlose to the
propagation threshol&,, the patterns exhibit the most ir-
regular shapes and we find a power law with an exponent of
approximately 2.0. As we increase the coupling, the patterns
become more ordered and the size range over which the
cluster-size distribution exhibits power-law scaling de-
creases, and the power-law exponent decreases to approxi-
mately 1.5.

Spiral turbulence in a continuous excitable mediuive
also consider a simple but realistic reaction-diffusion model
proposed by Baand Eiswirth9] that describes the oxidation
of CO on P(100. It is based on a piecewise linear version of
the FitzHugh-Nagumo modé¢[L0] in which a delayed pro-
duction of the inhibitor is introduced:

1 v+b 0
gu=—-u(u—1)| u— ——|+Au, 18
€ a
() i}
av="F(u)—v. 107"
The time scale relationship between the fast activatand —~ 107
the slow inhibitorv is regulated by the parameterand the 8
parametersa and b determine the excitation threshold. The Q
production of the inhibitor is delayed according to the func- 107°
tion f(u), which results from fitting an experimentally ob-
tained nullcling[11]: P
10
0 u<1/3 10° 10" 10°
f(uy={ 1-6.75u(u—1)* 1/3sus<1 (4) S
1 u>1.

FIG. 1. Turbulent patterns obtained from the cellular automaton
. model, Eq.(1), with A\=0.1,y=10"3, b=1.0, and the coupling
As a consequence of the specific formf¢t), two unstable e{)arameteK:0.08(a) and 0.10(b). The lattice spacing=1.0, the

steady sta}tes appear in addition to the r_est state, which pl Bne stepAt=0.05, and the refractory period was set tat4 An

an essential role in the appearance of spiral turbulence in thigyy mmetric perturbation that yields a single spiral was chosen for
model[9,12]. For a range of parameter values, a backfiringine injtial conditions.(c) Cluster-size distributior10 000 clusters
event (reexcitation in the wave bagkgives rise to the for K=0.08 obtained from a series of 250 snapshots of an array of
breakup of a spiral wave. The resulting spiral turbulencesjze 200<200. The scaling range can be approximated by the power
sustained by the collision of spiral arms and backfiringjaw p(s)=bs®, with an exponente~—1.9.

events, is shown in Fig.(3). Binary images of the patterns,

with respect to a threshold valug, that captures the essen- changes in the threshold for values abayg=0.7, which

tial features of the original spiral patterns, were generated forepresents the unstable focus of the system, although the ac-
the coherent cluster analydisee, for example, Fig.(B)]. tual slope(or scaling exponentincreases slightly with in-
The probability distribution of the coherent space-time cluscreasinguy;,, since a larger threshold value corresponds to a
ters follows a power-law scaling to a good approximationsystematic decrease of cluster sizes. In contrast to the dis-
over the parameter range of the spiral turbulefs=e, Fig. crete model, Eq(1), the scaling exponent does not depend
2(c)]. The power-law scaling is robust with respect to significantly upon the bifurcation parameterin the range
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FIG. 3. Spatiotemporal entropi@) as a function of the control
parameteK for the cellular automaton model, E(.), and(b) as a
function of € for the reaction-diffusion model, Eq3). All other
parameter values are the same as in Figs. 1 and 2.

10
— [0.08, 0.19), although the rate of backfiring events increases
\‘9,10 with e. This indicates that the size distribution of coherent
- structures(or decomposed wavgss relatively independent
of the backfiring rate.
i Spatiotemporal entropyThe decomposition of the spa-

tiotemporal patterns into coherent space-time clusters allows
the behavior to be characterized in terms of notations bor-
rowed from statistical physics. We first define the union of
all clustersng of spatiotemporal size to be in thes-cluster
classcs. Adding their sizes, one obtains the spatiotemporal
volume V of the classcg, Vs=sns. The relative coverage

FIG. 2. (a) Typical spatiotemporal pattern of the surface model,v¢ Of the classcy is obtained by normalizing with respect to
Eq. (3), in the parameter regime of spiral turbulence. The equationghe total coverage of all classes=sng/Viq;, Where Vi,

were numerically integrated by an explicit Euler methottegra-  =V;+V,+--- . The relative coverage, can be expressed
tion stepot=0.014) using a nine-point approximation of the La- in terms of the normalized cluster-size distributiqn
placian on a domain of 300300 grid points(where the unit grid =ng/Z, with the partition functionZ=3.ng, i.e., vg
size was 0.38 with the parameter valuea=0.84, b=0.07, €  =gp /(s), where(s) is the first moment of the normalized

=0.08. An asymmetric perturbation that yields a single spiral was|ster-size distribution. The relative coverage has a
chosen for the initial conditiongb) Corresponding binary image, simple and intuitive meaning: it gives the probability that
where white regions designate an activator concentratioru of any particular excited site belongs to the cluster ctass

>0.8. (c) Probability distribution of cohgrent spatiotemporal clus_- The degree of homogeneity in this distribution of cluster
ters (37,000 clusters where the space-time cube for the anaIySIsclasses reflects the disorder inherent in the spatiotemporal

consists of approximately £inary layers, and each laygas in o .
panel(b)] is taken every time step of&. The scaling range can be pattern and can be quantified by a spatiotemporal entropy,

approximated by the power lap(s) =bs”, with an exponent~ 1
—1.0. The power law is robust with respect to doubling the spatial S=— Ve lnve=In(s)— — sps In(spy). (5
size of the medium to 450450 grid points. 2s S S (s <S> 2s Ps In(sps



2098 BRIEF REPORTS PRE 61

The entropy vanishes if the excited sites belong to only oneegime. The backfiring gives rise to a dramatic increase in
cluster class, (vs=1), e.g., the spatiotemporal pattern con- the range of cluster sizes with a relatively homogeneous dis-
sists of either a single cluster or clusters of only one size. Aribution of cluster classes, and, consequently, a sudden in-
vanishing entropy does not necessarily require a “simple”créase in the entropy. o
initial state but can also arise from complex initial condi- In conclusu_)n_, we haye suggested a method ofquannfymg
tions, such as many spiral waves with randomly selecte nd characterizing spatiotemporal turbulence that is based on

cores. if an inherent process for generating new cluste e notation and concepts of statistical physics. The key fea-
S | : P ss for g INg new CIUSIE, e of this description is the decomposition of spatiotempo-

sources is lacking. T_he cqllision of uncorrelated.cllusters thelpa| dynamics into space-time clusters of coherent wave ac-
occurs over a transient time to yield one surviving clusteryjyity- A realistic reaction-diffusion model with a backfiring
The artificial fracturing of waves at the boundaries does nofnstability as well as a cellular automaton model with nucle-
affect the entropy, since the fractured waves belong to thation dynamics exhibit power-law distributions of coherent
same coherent parent structure. Applying the concept of spaiuster sizes, but with different scaling exponents. We have
tiotemporal entropy to the patterns exhibited by the discret@lso introduced a spatiotemporal entropy, based on the size
and continuous models, we observe a marked increase Ristribution of the space-time clusters, to quantify the degree
entropy at the transition from the ordered to the disordere@f disorder. A sharp increase in the entropy is linked to the
state for both models, as shown in Fig. 3. spontaneous generation of new waves, which collide with

In the cellular automaton model, E€L), the entropy in- parent waves and thereby generate spatiotemporal disorder.

creases smoothly with the degree of spatiotemporal disorde’rA} large entropy generally implies small predictability, i.e., it

reflecting an increasingly uniform probability distribution of Is difficult to predlctth_e clus_ter class Of_ an e_>§C|ted site in th_e
cluster classes,. The low entropy values at higher values of turbulent regime. This notion of predictability, however, is

K reflect coherent spatiotemporal clusters arising from nucle(—j"cfer.er.]t e the concept of Liapunav exponents for char-
ation events mainly near defectspiral cores and broken acterizing predictability in temporal chaotic systems. The

waves, while the higher values in the regime of spiral tur- cohere_nt—cluster algorithm presented' here allows an analysis
bulence(at low values oK) correspond to nucleation events of particular dynamical aspects_ of spiral turb_ulence, namely,
throughout the medium and a wide range of cluster sizes. Iqu processes of wave nucleation and merging.

the reaction-diffusion model, Ed3), the entropy increases We thank the National Science Foundati@@rant No.
sharply at the bifurcation point marking the onset of backfir-CHE-9974338, the Office of Naval Research, and the Petro-
ing and the transition from spiral patterns to the turbulenieum Research Fund for supporting this research.
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